Rabu, 13 November 2013

PERANGKAT KOMPUTER

Perangkat Komputer dapat diartikan sebagai sekumpulan benda atau alat yang bekerja menurut fungsinya masing-masing dalam sebuah komputer untuk mencapai sebuah hasil dari komputer tersebut.

Berikut adalah penjelasan detail tentang perangkat komputer dan kegunaanya:

Perangkat komputer secara garis besar terdiri dari 2 bagian paling utama, yaitu perangkat lunak (software) dan perangkat keras (Hardware). Agar masing-masing kedua perangkat ini lebih detail lagi kita ketahui, maka berikut adalah penjelasannya:

1. Perangkat Lunak (software)


Perangkat lunak adalah istilah umum untuk data yang diformat dan disimpan secara digital, termasuk program komputer, dokumentasinya, dan berbagai informasi yang bisa dibaca dan ditulis oleh komputer. Secara garis besar perangkat lunak komputer juga masih dapat digolongkan menjadi 2 bagian, yaitu:

1). Sistem operasi

Program dasar pada komputer yang menghubungkan pengguna dengan hardware komputer. Sistem operasi yang biasa digunakan adalah Linux, Windows, dan Mac OS. Tugas sistem operasi termasuk (namun tidak hanya) mengatur eksekusi program di atasnya, koordinasi input, output, pemrosesan, memori, serta instalasi software.

2). Sistem Aplikasi
Perangkat lunak aplikasi adalah suatu subkelas perangkat lunak komputer yang memanfaatkan kemampuan komputer langsung untuk melakukan suatu tugas yang diinginkan pengguna. Biasanya dibandingkan dengan perangkat lunak sistem yang mengintegrasikan berbagai kemampuan komputer, tapi tidak secara langsung menerapkan kemampuan tersebut untuk mengerjakan suatu tugas yang menguntungkan pengguna. Contoh utama perangkat lunak aplikasi adalah pengolah kata, lembar kerja, dan pemutar media.

2. Perangkat Keras (Hardware)

Perangkat keras komputer adalah semua bagian fisik komputer, dan dibedakan dengan data yang berada di dalamnya atau yang beroperasi di dalamnya, dan dibedakan dengan perangkat lunak (software) yang menyediakan instruksi untuk perangkat keras dalam menyelesaikan tugasnya.

Berikut adalah beberapa contoh perangkat keras komputer dan kegunaanya:

1). Keyboard

Keyboard merupakan unit input yang paling penting dalam suatu pengolahan data dengan komputer. Keyboard dapat berfungsi memasukkan huruf, angka, karakter khusus serta sebagai media bagi user (pengguna) untuk melakukan perintah-perintah lainnya yang diperlukan, seperti menyimpan file dan membuka file.

2). Mouse

Mouse adalah salah unit masukan (input device). Fungsi alat ini adalah untuk perpindahan pointer atau kursor secara cepat. Selain itu, dapat sebagai perintah praktis dan cepat dibanding dengan keyboard.

3). Processor

Processor disebut juga otak dari komputer semakin bagus tipe processor maka semakin mahal pula komputer, maka processor disebut sebagai inti dari komputer. Fungsi processor adalah untuk memproses semua kegiatan yang dilakukan komputer, yang direquest pengguna.

4). Motherboard

Motherboard adalah papan sirkuit tempat berbagai komponen elektronik saling terhubung seperti pada PC atau Macintosh dan biasa disingkat dengan kata mobo.Motherboard yang banyak ditemui dipasaran saat ini adalah motherboard milik PC yang pertama kali dibuat dengan dasar agar dapat sesuai dengan spesifikasi PC IBM.


5). Monitor
 

Monitor komputer adalah salah satu jenis soft-copy device, karena keluarannya adalah berupa sinyal elektronik, dalam hal ini berupa gambar yang tampil di layar monitor. Gambar yang tampil adalah hasil pemrosesan data ataupun informasi masukan. Monitor memiliki berbagai ukuran layar seperti layaknya sebuah televisi.


6). Power Supply
 

Sesuai dengan namanya power supply ini berfungsi mengalirkan listrik ke setiap bagian komputer agar dapat berjalan sesuai dengan fungsinya.


7).
 Harddisk

Harddisk adalah sebuah komponen perangkat keras yang menyimpan data sekunder dan berisi piringan magnetis. Harddisk diciptakan pertama kali oleh insinyur IBM, Reynold Johnson di tahun 1956. Harddisk pertama tersebut terdiri dari 50 piringan berukuran 2 kaki (0,6 meter) dengan kecepatan rotasinya mencapai 1.200 rpm (rotation per minute) dengan kapasitas penyimpanan 4,4 MB. Harddisk saat ini sudah ada yang hanya selebar 0,6 cm dengan kapasitas 750 GB.


8). Kipas (Pendingin)


Kipas atau Pendinginan komputer dan yang sering juga disebut pendinginan CPU adalah alat yang dipasang pada bagian dalam komputer untuk mengurangi atau menghilangkan panas dari sebuah komputer.

9). Storage Devices

  • ROM
ROM mempunyai tugas untuk menyimpan program yang sifatnya tetap atau permanen, tidak tergantung pada keberadaan arus listrik (nonvolatile), dan program yang tersimpan dalam ROM mempunyai sifat hanya bisa dibaca oleh para pengguna komputer. Menyimpan data pada ROM tidak dapat dilakukan dengan mudah, namun membaca data dari ROM dapat dilakukan dengan mudah. Biasanya program / data yang ada dalam ROM ini diisi oleh pabrik yang membuatnya. Oleh karena sifat ini, ROM biasa digunakan untuk menyimpan firmware (perangkat lunak yang berhubungan erat dengan perangkat keras).
  • RAM 
RAM (Random Access Memory) adalah memori utama komputer yang berfungsi untuk membaca dan menuliskan data. Dengan keberadaan RAM, maka kita bisa menjalankan 2 aktifitas sekaligus dalam sebuah komputer, yaitu menulis dan membaca data.


Pengolahan Data
Pengolahan data meliputi :
  1. Pengumpulan data - Mengumpulkan data yang menggambarkan tiap tindakan dan aktivitasnya dengan lingkungannya.
  2. Pengubahan Data - Pengklasifikasian, penyortiran, pengkalkulasian , perekapitulasian, dan pembandingan.
  3. Penyimpanan Data - Semua data harus disimpan disuatu tempat sampai ia diperlukan. Data tersebut disimpan dalam berbagai media penyimpanan, File yang disimpan disebut database.
  4. Pembuatan Dokumen - Sistem pengolahan data menghasilkan output yang dibutuhkan oleh perorangan atau kelompok baik di dalam maupun di luar.
Fungsi Pengolahan Data
  1. Mengambil program dan data (masukan / input)
  2. Menyimpan program dan data serta menyediakan untuk pemrosesan
  3. Menjalankan proses aritmatika dan logika pada data yang disimpan
  4. Menyimpan hasil antara dan hasil akhir pengolahan.
  5. Mencetak atau menampilkan data yang disimpan atau hasil pengolahan.

SEJARAH PERKEMBANGAN KOMPUTER

Sejarah Perkembangan Komputer
Istilah Komputer berasal dari bahasa latin computare yang berarti alat hitung, karena awalnya komputer lebih digunakan sebagai perangkat bantu dalam hal penghitungan angka - angka sebelum akhirnya menjadi perangkat multifungsi. Komputer saat ini adalah hasil evolusi panjang dari komputer zaman dahulu, yang mulanya adalah alat mekanik dan elektronik. Berikut contoh penemuan komputer.
a)     Abacus atau sempoa
Sempoa atau Abacus adalah alat kuno untuk penghitungan yang terbuat dari rangka kayu dangan sederetan poros yang berisi manik - manik yang bisa di geser. Alat ini digunakan untuk melakukan operasi aritmatika seperti penjumlahan, pengurangan, perkalian pembagian dan akar kuadrat.Muncul sekitar 5.000 Tahun yang lalu di cina dan masih digunakan di beberapa tempat hingga saat ini. Abacus dapat dianggap sebagai awal mula mesin komputasi (penghitungan). Penggunanya melakukan perhitungan dengan menggunakan biji - bijian geser yang diatur pada sebuah rak. Para pedagang di masa itu menggunakan abacus untuk menghitung transaksi perdagangan. Seiring dengan munculnya pensil dan kertas, abacus kehilangan popularitasnya.


b)    Mesin Buatan Charles Babbage  
Banyaknya kesalahan perhitungan dengan manual menginspirasikan seorang ilmuan yaitu Charles Babbage untuk menemukan mesin hitung mekanik sehingga dapat mengurangi kesalahan perhitungan. mesin mekanik sangat baik dalam mengerjakan tugas yang sama berulang kali tanpa kesalahan. sedangkan matematika membutuhkan repetisi sederhana dari suatu langkah - langkah tertentu. Masalah tersebut kemudian berkembang hingga menempatkan mesin mekanik. Kemudian babbage mendapat inspirasi dari perkembangan mesin hitung yang dikerjakanoleh wilhem Schickard, blaise pascal, dan gottfried leibniz. Charles Babbage mengusulkan suatu mesin untuk melakukan perhitungan persamaan differensial yang muncul pada tahun 1822. Mesin tersebut dinamakan mesin differensial.Dengan menggunakan tenaga uap, mesin tersebut dapat menyimpan program dan dapat melakukan kalkulasi serta mencetak hasilnya secara otomatis. Setelah bekerja dengan mesin differensial selama sepuluh tahun, babbage terinspirasi untuk memulai membuat komputer generasi purpose (multifungsi) pertama, yang di sebut analitycal engine.Atas sumbangan penemuan yang sangat besar ini maka Charles Babbage disebut bapak komputer modern.



c)     Mesin Analitik (Analitical Engine)
Setelah Penemuan oleh bapak Charles Babbage, tidak ada penemuan baru yang dianggap berarti terhadap perkembangan dunia komputer. Sampai dengan munculnya ilmuan bernama Howard H.Aiken (1900-1973), seorang insinyur Harvard yang bekerja dengan IBM, berhasil memproduksi kalkulator elektronik untuk untuk US Navy. Kalkulator tersebut berukuran panjang setengah lapangan bola kaki dan memiliki rentang kabel sepanjang 500 mil. The Harvard-IBM Automatic Sequence Controlled Calculator (ASCC), atau Mark I, merupakan komputer relai elektronik. Ia menggunakan sinyal elektromagnetik untuk menggerakkan komponen mekanik. Mesin tersebut beroprasi dengan lambat (membutuhkan 3-5 detik untuk setiap perhitungan) dan tidak fleksibel (urutan kalkulasi tidak dapat di ubah). Kalkulator tersebut dapat melakukan perhitungan aritmatik dasar dan persamaan yang lebih kompleks. Komputer ini sesungguhnya merupakan dambaan Charles Babbage.

Generasi Komputer
Komputer di bagi dalam beberapa generasi berdasarkan sejarah perkembangannya. Pada setiap generasi dibedakan berdasarkan kemampuan teknologinya untuk melakukan serangkaian proses (capability), makin rendah biaya operasionalnya (efficiency) dan makin mudah menggunakannya (user friendly). Berikut beberapa perkembangan generasi komputer.
  1. Komputer Generasi I Awal Mula diciptakan komputer adalah pada saat terjadinya Perang Dunia II, negara - negara yangf terlibat dalam perang tersebut berusaha mengembangkan komputer untuk mengeksploitasi potensi strategis yang dimiliki komputer. Hal ini meningkatkan pendanaan pengembangan komputer serta mempercepat kemajuan teknologi komputer. Pada tahun 1941, Konrad Zuse, seorang insinyur Jerman membangun sebuah komputer Z3 , untuk mendesain pesawat terbang dan peluru kendali. pihak sekutu juga membuat kemajuan lain dalam pengembangan komputer. Tahun 1943, pihak inggris menyelesaikan komputer pemecah kode rahasia yang dinamakan Colossus untukmemecahkan kode rahasia yang digunakan jerman. Perkembangan Komputer Generasi I diawali dengan terciptanya komputer yang disebut Electronic Numerical Integrator and Computer (ENIAC). Komputer ini dibuat oleh pemerintah Amerika Serikat yang bekerja sama dengan university of Pennysylvania pada tahun 1946. ENIAC terdiri atas 18.000 tabung vakum, 70.000 resistor, dan 5 juta titik solder.

Merupakan mesin yang sangat besar dan membutuhkan daya sebesar 160 kW. Komputer ini dirancang oleh John P.Eckert (1919-1995) dan John W.Mauchly (1907-1980). ENIAC merupakan komputer serbaguna (general purpose computer) yang bekerja 1000 kali lebih cepat dibanding Mark 1.
Pertengahan 1940-an, John Von Neumann (1903-1957) bergabung dengan tim University Of Pennysylvania dalam usaha membangun konsep desain komputer 40 tahun mendatang masih dipakai dalam teknik komputer. Von Neumann mendesain Electronic Discrete Variable Automatic Comnputer (EDVAC) pada tahun 1945 dengan sebuah memori untuk menampung baik program atau pun data. Teknik ini memungkinkan komputer untuk berhenti pada suatu saat dan kemudian melanjutkan pekerjaannya kembali. Kunci utama arsitektur Von Neumann adalah unit pemrosesan sentral (Central processor unit/ CPU), yang memungkinkan seluruh fungsi komputer dikoordinasikan melalui satu sumber tunggal. Tahun 1951, UNIVAC I (Universal Automatic Computer I) yang di buat oleh Remington Rand, menjadi komputer komersial pertama yang memanfaatkan model arsitektur Von Neumann. UNIVAC dimiliki oleh Badan Sensus Amerika Serikat dan General Electric. Salah satuhasil mengesankan komputer UNIVAC, yaitu prediksi kemenangan Eisenhower dalam pemilihan presiden Amerika Serikat pada tahun 1952. Komputer Generasi I memiliki ciri khas, yakni instruksi operasi dibuat secara spesifik untuk satu tugas tertentu. Setiap komputer memiliki program kode-biner masing - masing yang berbeda yang disebut "Bahasa Mesin"(Machine Language). Hal ini menyebabkan komputer sulit untuk diprogram dan membatasi kecepatannya. 
Berikut Karakteristik komputer Generasi I secara umum. 
1. Sirkuitnya Menggunakan Tabung Hampa. Penggunaan Tabung Hampa tersebut yang membuat ukuran komputer pada masa tersebut berukuran sangat besar.
1.     Komputer mempunyai silinder magnetik untuk menyimpan data.
2.     Komputer mempunyai silinder magnetik untuk menyimpan data.
3.     Programnya hanya bisa dibuat menggunakan bahasa mesin. 
4.     Instruksi operasi dibuat secara spesifik untuk tugas tertentu.
5.     Menggunakan Konsep Stored Program dengan memori utamanya adalah Magnetic Core Storage. 
6.     Menggunakan Simpanan Luar Magnetic Tape dan Magnetic Disk
7.     Ukuran fisik komputer besar, memerlukan ruang yang luas. 
8.     Suhunya cepat panas, sehingga diperlukan pendingin. 
9.     Prosesnya kurang cepat. 
10.  Daya simpannya kecil. 
11.  Membutuhkan daya listrik yang besar.

Beberapa komputer yang termasuk komputer generasi pertama adalah EDSAC, ACE, SEC, Havard Mark II, Havard Mark III, UNIVAC, dan lain sebagainya.
Komputer Generasi Kedua Bahasa mesin yang digunakan adalah bahasa assembly. Dalam bahasa assembly digunakan kode-kode berupa singkatan yang menggantikan kode biner. Komputer mampu mendesain produk, menghitung daftar gaji, mencetak data sehingga komputer generasi kedua ini sukses di pasaran. 
Ciri-ciri: 1) Ukuran fisik lebih kecil dibanding komputer generasi pertama karena telah menggunakan transistor pada sirkuitnya 2) Menggunakan memori yang cukup besar 3) Telah menggunakan media penyimpanan luar berbentuk removable disk seperti megnetic disk dan magnetic tape 4) Penggunaan aplikasinya lebih luar 5) Proses operasinya lebih cepat 6) Penggunaan daya lebih kecil 7) Program yang dibuat dapat menggunakan bahasa tingkat tinggi seperti FORTAN, COBOL, dan ALGOL.

Beberapa contoh dari komputer generasi kedua adalah IBM 7080, IBM 1400, UNIVAC SS90, UNIVAC III, PDP-1, PDP-8, Burroghts 200, dan lain sebagainya.

ULTRASONOGRAPHY (USG)

 Ultrasonografi (USG) adalah pemeriksaan dalam bidang penunjang diagnostik yang memanfaatkan gelombang ultrasonik dengan frekuensi yang tinggi dalam menghasilkan imajing, tanpa menggunakan radiasi, tidak menimbulkan rasa sakit (non traumatic), tidak menimbulkan efek samping (non invasif). Selain itu  ultrasonografi relatif murah, pemeriksaannya relatif cepat, dan persiapan pasien serta peralatannya relatif mudah. Gelombang suara ultrasonik memiliki frekuensi lebih dari 20.000 Hz, tapi yang dimanfaatkan dalam teknik ultrasonografi (kedokteran) gelombang suara dengan frekuensi 1-10 MHz.
Ultrasonik adalah gelombang suara dengan frekuensi lebih tinggi dari pada kemampuan pendengaran telinga manusia, sehingga kita tidak bisa mendengarnya sama sekali. Suara yang dapat didengar manusia mempunyai frekuensi antara 20 Hz – 20.000 Hz. Gelombang ultrasonik ini dapat dihasilkan oleh getaran mekanik pada kwarsa yang diberi tegangan listrik bolak-balik dengan frekuensi ultrasonik.
Salah satu aplikasi gelombang dalam bidang kedokteran adalah dalam ultrasonografi (USG).Ultrasonografi ini memanfaatkan gelombang ultrasonik yang merupakan gelombang elektromagnetik, untuk membantu para petugas kesehatan (dokter atau bidan) dalam mendiagnosa penyakit ataupun mendeteksi yang ada dalam tubuh pasiennya.
Ultrasonografi dalam bidang kesehatan bertujuan untuk pemeriksaan organ-organ tubuh yang dapat diketahui bentuk, ukuran anatomis, gerakan, serta hubungannya dengan jaringan lain disekitarnya. Sifat dasar ultrasound : -
- Sangat lambat bila melalui media yang bersifat gas, dan sangat cepat bila melalui media padat.
- Semakin padat suatu media maka semakin cepat kecepatan suaranya.
- Apabila melalui suatu media maka akan terjadi atenuasi.

2.2     Manfaat Ultrasonografi (USG)
Manfaat dari ultrasonografi adalah untuk pemeriksaan kanker pada hati dan otak, melihat janin di dalam rahim ibu hamil,  melihat pergerakan serta perkembangan sebuah janin, mendeteksi perbedaan antar jaringan-jaringan lunak dalam tubuh, yang tidak dapat dilakukan oleh sinar x, sehingga mampu menemukan tumor atau gumpalan lunak di tubuh manusia.
Selain manfaat di atas, ultrasonografi dimanfaaatkan untuk memonitor laju aliran darah. Pulsa ultrasonik berfrekuensi 5 – 10 MHz diarahkan menuju pembuluh nadi, dan suatu reciever akan menerima signal hamburan gelombang pantul. Frekuensi pantulan akan bergantung pada gerak aliran darah. Tujuannya untuk mendeteksi thrombosis (penyempitan pembuluh darah) yang menyebabkan  perubahan laju aliran darah.
Pemeriksaan dengan ultrasonografi lebih aman dibandingkan dengan pemeriksaan menggunakan sinar-x (sinar Rontgen) karena gelombang ultrasonik yang digunakan tidak akan merusak material yang dilewatinya sedangkan sinar x dapat mengionisasi sel-sel hidup. Karena ultrasonik merupakan salah satu gelombang mekanik, maka  pemeriksaan ultrasonografi disebut pengujian tak merusak (non destructive testing) . Aplikasi gelombang bunyi dalam bidang kedokteran  yang lain adalah penggunaan ultrasonografi  untuk pemeriksaan kanker pada hati dan otak. Selain itu, ultrasonografi dapat mengukur kedalaman suatu benda di bawah permukaan kulit melalui selang waktu dipancarkan sampai dipantulkan kembali gelombang ultrasonik.

2.3 Komponen dalam Mesin Ultrasonografi (USG)
Pada prinsipnya, ada tiga komponen mesin USG.Pertama, transduser, komponen yang dipegang dokter atau tenaga medis, berfungsi mengalirkan gelombang suara dan menerima pantulannya dan mengubah gelombang akusitik ke sinyal elektronik.Kedua, monitor, berfungsi memunculkan gambar.Ketiga, mesin USG sendiri, berfungsi mengubah pantulan gelombang suara menjadi gambar di monitor.Tugasnya mirip dengan central proccesing unit (CPU) pada komputer personal.
Peralatan Yang Digunakan
1.      Transducer
Transducer adalah komponen USG yang ditempelkan pada bagian tubuh yang akan diperiksa, seperti dinding perut atau dinding poros usus besar pada pemeriksaan prostat. Di dalam transducer terdapat kristal yang digunakan untuk menangkap pantulan gelombang yang disalurkan oleh transducer. Gelombang yang diterima masih dalam bentuk gelombang akusitik (gelombang pantulan) sehingga fungsi kristal disini adalah untuk mengubah gelombang tersebut menjadi gelombang elektronik yang dapat dibaca oleh komputer sehingga dapat diterjemahkan dalam bentuk gambar.
Transducer adalah alat yang berfungsi sebagai transmitter (pemancar) sekaligus sebagai recevier     (penerima).Dalam fungsinya sebagai pemancar, transducer merubah energi listrik menjadi energi mekanik berupa getaran suara berfrekuensi tinggi.Fungsi recevier pada transducer merubah energi mekanik menjadi listrik.
 


2.      Monitor yang digunakan dalam USG


3.      Mesin USG                                  

Mesin USG merupakan bagian dari USG dimana fungsinya untuk mengolah data yang diterima dalam bentuk gelombang. Mesin USG adalah CPUnya USG sehingga di dalamnya terdapat komponen-komponen yang sama seperti pada CPU pada PC.

Sonograph













Adapun komponen USG selain tiga komponen di atas yaitu :
Pulser adalah alat yang berfungsi sebagai penghasil tegangan untuk merangsang kristal pada transducer dan membangkitkan pulsa ultrasonik.
Tabung sinar katoda adalah alat untuk menampilkan gambaran ultrasound. Pada tabung ini terdapat tabung hampa udara yg memiliki beda potensial yang tinggi antara anoda dan katoda.
Printer adalah alat yang digunakan untuk mendokumentasikan gambaran yang ditampilkan oleh tabung sinar katoda.

PRINSIP KERJA USG
Transducer bekerja sebagai pemancar dan sekaligus penerima gelombang suara. Pulsa listrik yang di hasilkan oleh generator pulsa (pulser), di ubah menjadi energy mekanik (ultrasound) oleh transduser, yang di pancarkan dengan arah tertentu pada bagian tubuh yang di pelajari .sebagaian akan di pantulkan dan sebagian lagi akan merambat terus menembus jaringan yang akan menimbulkan bermacam-macam gema sesuai dengan akustik impedansi jaringan yang di laluinya. (ket: akustik impedansi adalah kemampuan untuk melewatkan gelombang yang melaluinya. Semakin keras suara maka Impedansi akustiknya semakin besar pula.)
Pantulan gema (echo) yang berasal dari jaringan-jaringan akan di terima oleh transduser kemudian di ubah menjadi pulsa listrik dan di teruskan ke amplifier (mesin) untuk di perkuat. Dan gelombang ini kemudian di teruskan ke tabung sinar katoda melalui receiver seterusnya di proses dalam CPU/storage dan ditampilkan sebagai gambar di layar monitor.
            Didalam transduser terdapat suatu indikator pengubah yaitu Kristal piezoelektrik. Kristal ini berfungsi mengubah pulsa listrik menjadi gelombang  suara (ultra sound) dan sebaliknya gelombang suara di ubah kembali menjadi pulsa listrik untuk di proses dan di tampilkan pada layar monitor.

KEDOKTERAN NUKLIR

Kedokteran nuklir adalah cabang atau Kedokteran dan pencitraan medis yang menggunakan isotop radioaktif (masing) dan bergantung pada proses peluruhan radioaktif dalam diagnosis dan pengobatan penyakit.

Kedokteran nuklir prosedur, masing digabungkan dengan senyawa kimia atau obat-obatan untuk bentuk radiopharmaceuticals lain.

Radiopharmaceuticals ini, yang pernah diberikan kepada pasien, dapat pelokalan untuk organ tertentu atau reseptor selular.

Properti ini dari radiopharmaceuticals memungkinkan Kedokteran nuklir kemampuan untuk gambar tingkat proses penyakit dalam tubuh, berdasarkan fungsi selular dan fisiologi, daripada mengandalkan perubahan fisik dalam anatomi jaringan.

Beberapa penyakit Kedokteran nuklir studi dapat mengidentifikasi masalah medis pada tahap awal dari tes diagnostik lain. Pengobatan penyakit, didasarkan pada metabolisme atau pengambilan atau pengikatan ligan, juga dapat dicapai, mirip dengan bidang farmakologi. Namun, radiopharmaceuticals bergantung pada kekuatan yang merusak jaringan radiasi ionisasi jangka pendek.

Teknik
Dalam pencitraan kedokteran nuklir, radiofarmasi diambil secara internal, misalnya intravena atau secara lisan. Kemudian, detektor eksternal (gamma kamera) menangkap dan membentuk gambar dari radiasi yang dipancarkan oleh radiofarmasi. Proses ini tidak seperti sinar-X diagnostik di mana radiasi eksternal melewati tubuh untuk membentuk sebuah gambar. 

Ada beberapa teknik kedokteran nuklir diagnostik. ''''Skintigrafi ("scint") adalah penggunaan radioisotop internal untuk membuat dua-dimensi. ''''SPECT adalah 3D tomografi teknik yang menggunakan data kamera gamma dari proyeksi banyak dan dapat direkonstruksi dalam pesawat yang berbeda. ''''Positron emisi tomografi (PET) menggunakan deteksi kebetulan untuk proses gambar fungsional. 

Tes kedokteran nuklir berbeda dari kebanyakan lainnya modalitas pencitraan dalam tes diagnostik terutama menunjukkan fungsi fisiologis sistem yang diteliti sebagai lawan pencitraan anatomi tradisional seperti CT atau MRI. 

Studi pencitraan kedokteran nuklir adalah organ atau jaringan umumnya lebih spesifik (misalnya: paru-paru memindai, memindai jantung, tulang scan, scan otak, dll) daripada yang di radiologi konvensional pencitraan, yang berfokus pada bagian tertentu dari tubuh (misalnya: X dada -ray, perut / panggul CT scan, CT scan kepala, dll).
Selain itu, ada penelitian kedokteran nuklir yang memungkinkan pencitraan seluruh tubuh berbasis pada reseptor sel tertentu atau fungsi.
Contohnya adalah seluruh tubuh PET scan atau PET / CT scan, scan gallium, indium scan sel darah putih, MIBG scan dan octreotide.
Sementara kemampuan metabolisme nuklir untuk proses penyakit gambar dari perbedaan dalam metabolisme yang tak tertandingi, tidak unik. 

Teknik tertentu seperti jaringan citra fMRI (jaringan terutama otak) oleh aliran darah, dan dengan demikian menunjukkan metabolisme.Juga, peningkatan kontras teknik di kedua CT dan MRI menunjukkan daerah jaringan yang menangani obat-obatan berbeda, karena adanya proses inflamasi.

Tes diagnostik dalam kedokteran nuklir memanfaatkan cara menangani tubuh zat berbeda ketika ada penyakit atau patologi hadir. Radionuklida diperkenalkan ke dalam tubuh sering kimia terikat untuk sebuah kompleks yang bertindak khas di dalam tubuh, hal ini umumnya dikenal sebagai pelacak satu. Dalam kehadiran penyakit, pelacak sering akan didistribusikan sekitar dan tubuh / atau diproses secara berbeda. 

Sebagai contoh, ligan metilen-diphosphonate (MDP) dapat preferentially diambil oleh tulang. Dengan kimia melampirkan teknesium-99m ke MDP, radioaktivitas dapat diangkut dan menempel pada tulang melalui hidroksiapatit untuk pencitraan. 

Setiap fungsi fisiologis meningkat, seperti karena patah tulang di tulang, biasanya akan berarti peningkatan konsentrasi pelacak. Ini sering mengakibatkan munculnya 'hot spot-' yang merupakan peningkatan fokus di radio-akumulasi, atau peningkatan umum akumulasi radio seluruh sistem fisiologis. Penyakit beberapa proses menghasilkan pengecualian dari pelacak, mengakibatkan munculnya 'tempat dingin'. Banyak pelacak kompleks telah dikembangkan untuk gambar atau mengobati berbagai organ, kelenjar, dan proses fisiologis. 

Di beberapa pusat, scan kedokteran nuklir dapat ditumpangkan, menggunakan perangkat lunak atau kamera hibrida, pada gambar dari modalitas seperti CT atau MRI untuk menyorot bagian tubuh di mana radiofarmaka terkonsentrasi. Praktek ini sering disebut sebagai fusi citra atau co-pendaftaran, misalnya SPECT / CT dan PET / CT. 

Pencitraan fusi teknik kedokteran nuklir memberikan informasi tentang anatomi dan fungsi, yang sebaliknya akan tersedia, atau akan membutuhkan prosedur yang lebih invasif atau pembedahan.

Pengertian Teleradiologi
Teleradiologi adalah pengiriman data suatu gambaran radiografi dari suatu tempat ke tempat lain secara elektronik untuk mendapatkan hasil diagnosa dan dapat digunakan untuk konsultasi satu sama lain ACR standard teleradiologi.
Prinsip dasar Teleradiologi
Karakteristik utama dari teknologi informasi adalah kemampuan untuk menangkap/menerima, mengelola, dan mentransfer informasi dari suatu lokasi ke lokasi lainnya melalui jaringan komunikasi.



Teleradiologi merupakan salah satu komponen dalam sistem informasi kesehatan yang mempunyai kompleksitas teknologi yang tinggi. Implementasinya dapat dikaitkan dengan sistem informasi radiologi dan sistem informasi rumah sakit yang diharapkan mampu memberikan kualitas dari pelayanan pasien dan mendukung pekerjaan administratif sehingga memperbaiki efesiensi dan efektifitas rumah sakit.

Sistem teleradiologi merupakan element PACS (Picture Achiving and Communication in Medicine) yang terdiri dari akuisisi atau digitalisasi, penyimpanan atau pengarsipan, pengaksesan, manipulasi citra, dan transmisi. Fasilitas pencitraan data ini memerlukan jaringan kecepatan tinggi yang biasanya menggunakan media fiber optik agar cepat dalam prosesnya.
Tujuan Teleradiologi
Menurut American College of Radiology bahwa sistem teleradiologi bertujuan sebagai berikut :
a. Menyediakan jasa konsultasi dan interpretatife radiologi dengan waktu yang cepat dan singkat.
b. Menyediakan jasa konsultasi medis antar dokter dan pasien tanpa harus berada pada satu tempat.
c. Mengantarkan dengan cepat hasil diagnosa gambar radiografi dalam keadaan darurat dan tidak darurat.
d. Menyediakan layanan cepat antar dokter spesialis radiologi yang membutuhkan konsultasi dengan dokter spesialis radiologi lain.
e. Menambah wawasan dan kesempatan mengembangkan ilmu yang dimiliki radiografer dan dokter.
f. Merupakan salah satu pendukung dari layanan telemedisin lainnya.

DASAR PROTEKSI RADIASI

Dalam penggunaan radiasi untuk radiografi dalam radiodiagnostik akan memberikan kontribusi radiasi kepada banyak pihak. Radiasi akan diterima oleh operator, hewan dan lingkungan. Ada 3 prinsip yang telah direkomendasikan oleh International Commission Radiological Protection (ICRP) untuk dipatuhi, yaitu :

1. Justifikasi
Setiap pemakaian zat radioaktif atau sumber lainnya harus didasarkan pada azaz manfaat. Suatu kegiatan yang mencakup paparan atau potensi paparan hanya disetujui jika kegiatan itu akan menghasilkan keuntungan yang lebih besar bagi individu atau masyarakat dibandingkan dengan kerugian atau bahaya yang timbul terhadap kesehatan. Hewan yang memang benar-benar memerlukan uji lanjut dengan radiografi dengan pertimbangan asas manfaat lebih banyak dapat dilakukan radiografi.

2. Limitasi
Dosisi ekivalen yang diterima pekerja radiasi atau masyarakat tidak boleh melalmpaui Nilai Batas Dosis (NBD) yang telah ditetapkan. Batas dosis bagi pekerja radiasi dimaksudkan untuk mencegah munculnya efek deterministik (non stokastik) dan mengurangi peluang terjadinya efek stokastik.

3. Optimasi
Semua penyinaran ahrus diusahakan serendah-rendahnya (as low as reasonably achieveable - ALARA), dengan mempertimbangkan faktor ekonomi dan sosial. Kegiatan pemanfaatan tenaga nuklir harus direncanakan dan sumber radiasi harus dirancang dan dioperasikan untuk menjamin agar paparan radiasi yang terjadi dapat ditekan serendah-rendahnya.

Nilai Batas Dosis
Pembatasan dosis radiasi baru dikenal pada tahun 1928 yaitu sejak dibentuknya organisasi internasional untuk proteksi radiasi (International Commission on Radiological Protection/ICRP). Pelopor proteksi radiasi yang terkenal adalah seorang ilmuwan dari Swedia bernama Rolf Sievert. Ia lahir pada tahun 1896 ketika Henri Becquerel menemukan zat radioaktif alam. Sievert kemudian diabadikan sebagai satuan dosis paparan radiasi dalam sistem Satuan Internasional (SI). 1 Sievert (Sv) menunjukkan berapa besar dosis paparan radiasi dari sumber radioaktif yang diserap oleh tubuh per satuan massa (berat), yang mengakibatkan kerusakan secara biologis pada sel/jaringan.

Menurut rekomendasi ICRP, pekerja radiasi yang di tempat kerjanya terkena radiasi tidak boleh menerima dosis radiasi lebih dari 50 mSv per tahun dan rata-rata pertahun selama 5 tahun tidak boleh lebih dari 20 mSv. Nilai maksimum ini disebut Nilai Batas Dosis (NBD). Jika wanita hamil yang di tempat kerjanya terkena radiasi, diterapkan batas radiasi yang lebih ketat. Dosis radiasi paling tinggi yang diizinkan selama kehamilan adalah 2 mSv.

Prinsip Proteksi Radiasi:

1. Menggunakan Pelindung (Shielding)

Penggunaan perisai/pelindung berupa apron berlapis Pb, glove Pb, kaca mata Pb dsb yang merupakan sarana proteksi radiasi individu. Tidak menghandle hewan secara langsung, hewan dapat disedasi atau bila perlu dianestesi.
Proteksi terhadap lingkungan terhadap radiasi dapat dilakukan dengan melapisi ruang radiografi menggunakan Pb untuk menyerap radiasi yang terjadi saat proses radiografi.

2. Menjaga Jarak

Radiasi dipancarkan dari sumber radiasi ke segala arah. Semakin dekat tubuh kita dengan sumer radiasi maka paparan radiasi yang kita terima akan semakin besar. Pancaran radiasi sebagian akan menjadi pancaran hamburan saat mengenahi materi. Radiasi hamburan ini akan menambah jumlah dosis radiasi yang diterima. Untuk mencegah paparan radiasi tersebut kita dapat menjaga jarak pada tingkat yang aman dari sumber radiasi.

3. Mempersingkat Waktu Paparan

Sedapat mungkin diupayakan untuk tidak terlalu lama berada di dekat sumber radiasi saat proses radiografi. Hal ini untuk mencegah terjadinya paparan radiasi yang besar.
Pengaturan mAs yang tepat, dengan waktu paparan 0,0.. detik lebih baik dari pada 1 detik.
Nilai kVp yang digunakan cukup tinggi sehingga daya tembus dalam radiografi cukup baik. dengan demikian maka pengulangan radiografi dapat dicegah.

DIGITAL RADIOGRAPHY (DR)

Digital radiografi adalah sebuah bentuk pencitraan sinar_X, dimana sensor-sensor sinar-X digital digunakan menggatikan film fotografi konvensional. Dan processing kimiawi digantikan dengan sistem komputer yang terhubung dengan monitor atau laser printer.
Komponen Digital Radiography
Sebuah sistem digital radiographi terdiri dari 4 komponen utama, yaitu X-ray source, detektor, Analog-Digital Converter, Computer, dan Output Device.
a. X-ray Source
Sumber yang digunakan untuk menghasilkan X-ray pada DR sama dengan sumber X-ray pada Coventional Radiography. Oleh karena itu, untuk merubah radiografi konvensional menjadi DR tidak perlu mengganti pesawat X-ray.
b. Image Receptor
Detektor berfungsi sebagai Image Receptor yang menggantikan keberadaan kaset dan film. Ada dua tipe alat penangkap gambar digital, yaitu Flat Panel Detectors (FPDs) dan High Density Line Scan Solid State Detectors.
1) Flat Panel Detectors (FPDs)
FPDs adalah jenis detektor yang dirangkai menjadi sebuah panel tipis. Berdasarkan bahannya, FPDs dibedakan menjadi dua, yaitu
a) Amorphous Silicon
Amorphous Silicon (a-Si) tergolong teknologi penangkap gambar tidak langsung karena sinar-X diubah menjadi cahaya. Dengan detektor-detektor a-Si, sebuah sintilator pada lapisan terluar detektor (yang terbuat dari Cesium Iodida atau Gadolinium Oksisulfat), mengubah sinar-X menjadi cahaya. Cahaya kemudian diteruskan melalui lapisan photoiodida a-Si dimana cahaya tersebut dikonversi menjadi sebuah sinyal keluaran digital. Sinyal digital kemudian dibaca oleh film transistor tipis (TFT’s) atau oleh Charged Couple Device (CCD’s). Data gambar dikirim ke dalam sebuah computer untuk ditampilkan. Detektor a-Si adalah tipe FPD yang paling banyak dijual di industri digital imaging saat ini.
b) Amorphous Selenium (a-Se)
Amorphous Selenium (a-Se) dikenal sebagai detektor langsung karena tidak ada konversi energi sinar-X menjadi cahaya. Lapisan terluar dari flat panel adalah elektroda bias tegangan tinggi. Elektrode bias mempercepat energi yang ditangkap dari penyinaran sinar X mealui lapisan selenium. Foton-foton sinar-X mengalir melalui lapisan selenium menciptakan pasangan lubang electron. Lubang-lubang elektron tersebut tersimpan dalam selenium berdasarkan pengisian tegangan bias. Pola (lubang-lubang) yang terbentuk pada lapisan selenium dibaca oleh rangakaian TFT atau Elektrometer Probes untuk diinterpretasikan menjadi citra.
2) High Density Line Scan Solid State device
Tipe penangkapan gambar yang kedua pada DR adalah High Density Line Scan Solid State device. Alat ini terdiri dari Photostimulable Barium Fluoro Bromide yang dipadukan dengan Europium (BaFlBr:Eu) tatu Fosfor Cesium Bromida (CsBr).
Detektor fosofor merekam energi sinar-X selama penyinaran dan dipindai (scan) oleh sebuah dioda laser linear untuk mengeluarkan energi yang tersimpan yang kemudian dibaca oleh sebuah penangkap gambar digital Charge Coupled Devices (CCD’s). Image data kemudian ditransfer oleh Radiografer untuk ditampilkan dan dikirim menuju work stasion milik radiolog.
c. Analog to Digital Converter
Komponen ini berfungsi untuk merubah data analog yang dikeluarkan detektor menjadi data digital yang dapat diinterpretasikan oleh komputer.
d. Komputer
Komponen ini berfungsi untuk mengolah data, manipulasi image, menyimpan data-data (image), dan menghubungkannya dengan output device atau work station.
e. Output Device
Sebuah sistem digital radiografi memiliki monitor untuk menampilkan gambar. Melaui monitor ini, radiografer dapat menentukan layak atau tidaknya gambar untuk diteruskan kepada work station radiolog.
Selain monitor, output device dapat berupa laser printer apabila ingin diperoleh data dalam bentuk fisik (radiograf). Media yang digunakan untuk mencetak gambar berupa film khusus (dry view) yang tidak memerlukan proses kimiawi untuk mengasilkan gambar.
Gambar yang dihasilkan dapat langsung dikirimkan dalam bentuk digital kepada radiolog di ruang baca melaui jaringan work station. Dengan cara ini, dimungkinkan pembacaan foto melaui teleradiology.





Prinsip Kerja
Prinsip kerja Digital Radiography (DR) atau (DX) pada intinya menangkap sinar-X tanpa menggunakan film. Sebagai ganti film sinar X, digunakan sebuah penangkap gambar digital untuk merekam gambar sinar X dan mengubahnya menjadi file digital yang dapat ditampilkan atau dicetak untuk dibaca dan disimpan sebagai bagian rekam medis pasien.